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SHORT COMMUNICATION

Roe linearization for the Euler equations augmented by the
convective terms from the k–� turbulence model

Ratan Joarder and G. Jagadeesh∗,†,‡

Department of Aerospace Engineering, Indian Institute of Science, Bangalore, India

SUMMARY

This paper describes the method of calculation of the eigenvalues, eigenvectors of the Jacobian matrix of
the Euler equations augmented by the convective part of k–� turbulence model. The equations are 3D
and values are expressed in terms of cell normals of a finite volume. The expressions for wave strengths
are also found, which are also necessary to calculate the inter-cell fluxes for Roe’s scheme. Copyright q
2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The cell normal formulation of Euler equations is very convenient from computational point
of view in the sense that it allows to update the dependent variables in a single step unlike
dimensional splitting. The k–� turbulence model are frequently used in a low-cost turbulent
flow simulation. If the convective part of the k–� equation could be used together with Euler
equations in the calculation of inviscid fluxes, it would ease the process further. In conservative
formulation the expression for the augmented Jacobian matrix is so complex that direct calculation
of its eigenvectors to use in Roe’s scheme [1] is tedious. In the following portion the method of
calculation of those quantities is described following the procedure as mentioned in [2]. It is found
that judicious choice of arbitrary constants ensures linearly independent set of eigenvectors.
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2. FORMULATION

The Navier–Stokes equations with k–� turbulence model is given by

�
�t

∫
V
Udv+

∮
S
(H−F).jds=

∫
V
Sdv (1)

where U and S are column vectors containing conservative variables and source terms, respectively.
H and F are second-order flux-tensors containing inviscid and viscous fluxes, respectively. Here,
U=[�, �u, �v, �w, �E, �k, ��]T and H=[�V, �uV+ pIx , �vV+ pIy, �wV+ pIz, (�E+
p)V, �kV, ��V]T. The expressions for S and F are not given since they are not required in
the present context. Here, �, u, v, w, p, k, � represent density, x, y, z components of velocity,
pressure, turbulence kinetic energy and specific dissipation rate, respectively, V=uIx +vIy+wIz ,
Ix ,Iy,Iz are unit vectors along the x, y, z directions, j is the outward normal to ds,

E= p

�(�−1)
+ 1

2 (u
2+v2+w2)+k

3. CALCULATION PROCEDURE

Roe’s scheme gives approximate value of HN (UL ,UR) at cell interfaces as

HN (UL ,UR)= 1

2
(HN (UL)+HN (UR))− 1

2

6∑
i=1

�̃i |�̃i |K̃ (i) (2)

where HN (UL),HN (UR), �̃i , �̃i , K̃ (i) are normal fluxes at left and right states across a cell
interface, Roe average wave strengths, eigenvalues and eigenvectors of the matrix A.j, respectively.
A=�H/�U is homogeneous, in other words H=AU. As direct calculation of eigenvectors are
tedious, an alternative method is followed. In that first the expression for a matrix containing the
right eigenvectors of the Jacobian matrix (Ã) is found for primitive variable formulation of the
augmented set of equations and then it is multiplied by the Jacobian matrix of transformation from
the conservative to the non-conservative variables, which is defined as M=�U/�V where V is a
column vector containing primitive variables given by [� u v w p k �]T. The expression for M
and Ã are given by

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0

u � 0 0 0 0 0

v 0 � 0 0 0 0

w 0 0 � 0 0 0

1

2
V 2+k �u �v �w

1

�−1
� 0

k 0 0 0 0 � 0

� 0 0 0 0 0 �

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Ã=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u⊥ ��x ��y ��z 0 0 0

0 u⊥ 0 0
�x

�
0 0

0 0 u⊥ 0
�y

�
0 0

0 0 0 u⊥
�z

�
0 0

0 �a2�x �a2�y �a2�z u⊥ 0 0

0 0 0 0 0 u⊥ 0

0 0 0 0 0 0 u⊥

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

respectively, where V 2= 1
2 (u

2+v2+w2). The eigenvalues of A are �=[u⊥, u⊥, u⊥, u⊥+
a�, u⊥−a�, u⊥, u⊥], where � is the modulus of the vector j, u⊥ =u�x +v�y+w�z , �x ,�y,�z
are components of j, a is speed of sound.

The left eigenvectors l j are found by solving

l j A=� j l
j (3)

For � j =u⊥ the following conditions are found for the components of l j :

l1 arbitrary

l2+a2l5=0

l3+a2l5=0

l4+a2l5=0

�x l2+�yl3+�zl4=0

l6 arbitrary

l7 arbitrary

(4)

The corresponding eigenvectors are

l1 = [�11,0,�z�
1
2,−�y�

1
2,−�11/a

2,�13,�
1
4]

l2 = [�21,0,�z�
2
2,−�y�

2
2,−�21/a

2,�23,�
2
4]

l3 = [�31,0,�z�
3
2,−�y�

3
2,−�31/a

2,�33,�
3
4]

l6 = [�61,0,�z�
6
2,−�y�

6
2,−�61/a

2,�63,�
6
4]

l7 = [�71,0,�z�
7
2,−�y�

7
2,−�71/a

2,�73,�
7
4]

(5)
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For the two remaining eigenvectors, one obtains
l1=0

l2=±a�̂x�l5

l3=±a�̂y�l5

l4=±a�̂z�l5

l5 arbitrary

l6=0

l7=0

(6)

and

l4=[0, �̂x�
4, �̂y�

4, �̂z�
4,�4/�a,0,0] (7)

l5=[0,−�̂x�
5,−�̂y�

5,−�̂z�
5,�5/�a,0,0] (8)

where �̂x , �̂y, �̂z are components of unit vectors along j. The following values of arbitrary constants
(�) are chosen

�12=�22=�32 = 1

�

�4=�5 = 1

�11= �̂x , �21= �̂y, �31 = �̂z

�13=�14=�23=�24=�33=�34=�64=�73 = 0

�63=�74 = 1

(9)

The matrix (L−1) whose rows contains the left eigenvectors and its inverse are given by

L−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�̂x 0 �̂z −�̂y
−�̂x

a2
0 0

�̂y −�̂z 0 �̂x
−�̂y

a2
0 0

�̂z �̂y −�̂x 0
−�̂z

a2
0 0

0 �̂x �̂y �̂z
1

�a
0 0

0 −�̂x −�̂y −�̂z
1

�a
0 0

�̂x 0 �̂z −�̂y
−�̂x

a2
1 0

�̂y −�̂z 0 �̂x
−�̂y

a2
0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10)
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L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�̂x �̂y �̂z
�

2a

�

2a
0 0

0 −�̂z �̂y
�̂x

2
− �̂x

2
0 0

�̂z 0 −�̂x
�̂y

2
− �̂y

2
0 0

−�̂y �̂x 0
�̂z

2
− �̂z

2
0 0

0 0 0
�a

2

�a

2
0 0

−1 0 0 0 0 1 0

0 −1 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Then L is pre-multiplied by M to obtain the matrix containing right eigenvectors of the Jacobian
matrix in conservative formulation. That is given by

R=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�̂x �̂y �̂z
�

2a

�

2a
0 0

u�̂x u�̂y−��̂z u�̂z+��̂y
�u

2a
+ 1

2
��̂x

�u

2a
− 1

2
��̂x 0 0

v�̂x +��̂z v�̂y v�̂z−��̂x
�v

2a
+ 1

2
��̂y

�v

2a
− 1

2
��̂y 0 0

w�̂x −��̂y w�̂y+��̂x w�̂z
�w

2a
+ 1

2
��̂z

�w

2a
− 1

2
��̂z 0 0

−�+b.Ix b.Iy b.Iz
�

2a
(H+au⊥)

�

2a
(H−au⊥) � 0

−�+k�̂x k�̂y k�̂z
�k

2a

�k

2a
� 0

��̂x −�+��̂y ��̂z
��

2a

��

2a
0 �

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where b=(k+V 2/2)I�+�(V×I�), H =a2/(�−1)+ 1
2V

2+k, Î� is the unit vector along j. The
eigenvalues remain the same. The values of wave strengths are calculated by using the relation

�U=
7∑

i=1
�i R

i (11)

where � represents jump across left and right states. The expressions for �’s are �1= �̂x (��−
�p/a2)+ �̂z�v− �̂y�w, �2= �̂y(��−�p/a2)+ �̂x�w− �̂z�u, �3= �̂z(��−�p/a2)+ �̂y�u−
�̂x�v, �4=�p/�a+�u⊥, �5=�p/�a−�u⊥, �6=�k+ �̂x (��−�p/a2)+ �̂z�v− �̂y�w, �7=
��+ �̂y(��−�p/a2)+ �̂x�w− �̂z�u.
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The Roe average states are obtained by solving the equations

�U=
7∑

i=1
�̃i R̃

i (12)

�HN =
7∑

i=1
�̃i �̃i R̃

i (13)

and are given by
�̃ = √

�L�R

ũ =
√

�LuL +√
�RuR√

�L +√
�R

ṽ =
√

�LvL +√
�RvR√

�L +√
�R

w̃ =
√

�LwL +√
�RwR√

�L +√
�R

H̃ =
√

�L HL +√
�RHR√

�L +√
�R

k̃ =
√

�LkL +√
�RkR√

�L +√
�R

�̃ =
√

�L�L +√
�R�R√

�L +√
�R

(14)

The primitive variables (�,u,v,w,k,�), a and H in �i , �i and R are replaced by corresponding
Roe average values to obtain �̃, �̃ and R̃. ã=[(�−1)(H̃− 1

2 Ṽ
2− k̃]1/2.

4. NUMERICAL TEST CASE

To run a test case the viscous and source terms (due to k–� equations) need to be used. The
expressions for F and S of Equation (1) are given by

F= 1

Re∞

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

�xx �̂x +�yx �̂y+�zx �̂z

�xy �̂x +�yy �̂y+�zy �̂z

�xz �̂x +�yz �̂y+�zz �̂z

A

(�+	∗�t )
�k
�x

�̂x +(�+	∗�t )
�k
�y

�̂y+(�+	∗�t )
�k
�z

�̂z

(�+	�t )
��

�x
�̂x +(�+	�t )

��

�y
�̂y+(�+	�t )

��

�z
�̂z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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S=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

0

S�
k

Re∞�
− 2

3
�kD−
∗Re∞�k�

�
�

k

(
S�

k

Re∞�
− 2

3
�kD

)
−
Re∞��2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where

�xx =�eff

(
4

3

�u
�x

− 2

3

�v

�y
− 2

3

�w

�z

)
− 2

3
�k, �xy =�eff

(
�u
�y

+ �v

�x

)
, �xz =�eff

(
�u
�z

+ �w

�x

)

and similarly for other shear stresses, �eff=�+�t where � and �t are molecular and eddy
viscosities, respectively. � is determined following Sutherland’s law and �t =�k/�, A=(u�xx +
v�yx +w�zx +(�+	∗�t )�k/�x−qx )�̂x +(u�xy+v�yy+w�zy+(�+	∗�t )�k/�y−qy)�̂y+(u�xz+
v�yz+w�zz+(�+	∗�t )�k/�z−qz)�̂z

qx =−
(

�

Pr(�−1)
+ �t
Prt (�−1)

)
�a2

�x

qy,qz follow similarly, here Pr=0.71 and Prt =0.9 are moleculer and turbulent Prandtl number
respectively, 	=	∗ = 1

2 ,

S =
(
4

3

�u
�x

− 2

3

�v

�y
− 2

3

�w

�z

)
�u
�x

+
(
4

3

�v

�y
− 2

3

�u
�x

− 2

3

�w

�z

)
�v

�y
+

(
4

3

�w

�z
− 2

3

�u
�x

− 2

3

�v

�y

)
�w

�z

+
(

�u
�y

+ �v

�x

)2

+
(

�u
�z

+ �w

�x

)2

+
(

�v

�z
+ �w

�y

)2

, D= �u
�x

+ �v

�y
+ �w

�z


= 3
40 , 
∗ = 9

100 , �= 5
9 .

The inviscid and viscous terms of Equation (1) are integrated in time explicitly based on a
multi-stage Runge–Kutta method [3], while the source terms are integrated implicitly following
the method given in [4]. Viscous fluxes are discretized by central differencing as given in [5]. To
increase the spatial accuracy to third order, a MUSCL extrapolation strategy [6] is followed with
Van Albada limiter [7] to suppress spurious oscillations near a strong discontinuity.

The numerical results are compared with experimental data points of supersonic turbulent
boundary layer velocity profile over a flat plate as reported in [8, 9]. Although a 2D simulation is
sufficient for the test case, a 3D simulation is carried out because the present formulation is for 3D
case. The Reynolds number (Re∞) and Mach number are 4.5×106 and 4.5, respectively. A total of
121×61×51 grids points are used. Boundary conditions are same as in [8]. In spanwise direction
extrapolation is used. Figure 1 shows the variation of normalized velocity profile u+ =u/u� against
wall normal co-ordinate y+ = yu�/�. Here, u� is friction velocity.
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5
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15

20

25

y+

u+

Computed

Measured

Figure 1. Comparison of computed and measured [9] velocity profiles.

5. CONCLUSION

The eigenvalues, eigenvectors and wave strengths of Roe’s scheme are calculated for the Euler
equations augmented by convective part of the k–� turbulence model. The arbitrary constants
while determining the eigenvectors are judiciously chosen so that the set is linearly independent
and components of individual vectors are simple in form. A 3D test case is considered to check
the formulation.
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